Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1134820160450070948
Journal of the Korean Society of Food Science and Nutrition
2016 Volume.45 No. 7 p.948 ~ p.957
Protective Effects of New Herbal Composition (MH-30) against Radiation Injuries in Hematopoietic and Self-Renewal Tissues
Jung U-hee

PArk Hye-ran
Lee Ho-Yong
Baek Ga-Young
Jo Sung-kee
Abstract
We previously developed an herbal composition (HemoHIM) based on the water extracts of Angelica gigas radix, Cnidium officinale rhizoma, and Paeonia japonica radix to protect and recover hematopoietic and intestinal tissues against radiation injuries. In this study, to develop a composition with improved activities based on enhanced fat-soluble polyphenol contents, we prepared a new herbal composition, MH-30, from the above three herbs by 30% ethanol extraction and hot water extraction. HPLC analysis of the ethanol fractions of MH-30 and HemoHIM revealed that MH-30 had higher contents of many fat-soluble polyphenol compounds than HemoHIM (8.7-fold increase for decursin), whereas contents of water-soluble polyphenol compounds showed little differences between the two compositions. Then, we evaluated MH-30 and HemoHIM for their in vitro antioxidant and immune cell-stimulating activities as well as in vivo protective effects against radiation injuries in hematopoietic and self-renewal tissues. In antioxidant activity assays, MH-30 showed higher hydroxyl radical scavenging activity than HemoHIM (1.4- to 1.9-fold for compositions and 2.3- to 4.5-fold for ethanol fractions). On the other hand, MH-30 and HemoHIM exhibited similar immune cell-stimulating activities as measured by in vitro lymphocyte proliferation. MH-30 increased endogenous spleen colony formation, decreased bone marrow cell apoptosis, and enhanced survival of intestinal crypts in irradiated mice, demonstrating effective protection of MH-30 against radiation-induced injuries in hematopoietic and self-renewal tissues. The 30-day survival rate of lethally irradiated mice, a comprehensive index for radioprotective efficacy, was also elevated by MH-30. Noticeably, MH-30 showed higher protective effects than HemoHIM in all mouse experiments. These results demonstrate that MH-30 can protect hematopoietic and self-renewal tissues against radiation injuries more effectively than HemoHIM. Therefore, MH-30 can be a good candidate to reduce radiation injuries in hematopoietic and self-renewal tissues incurred by radiation accidents or cancer radiation therapy.
KEYWORD
herbal composition, radiation protection, hematopoiesis, immune, self-renewal tissue
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)